کلاسه بندی[1] یکی از وظایف اساسی در داده کاوی[2] است که بطور وسیعی در زمینه یادگیری ماشین[3]، شبکه های عصبی[4] و تشخیص الگو[5] مورد مطالعه واقع شده است. ورودی، مجموعه ای از نمونه های آموزشی[6] است که شامل چندین ویژگی[7] است. ویژگی ها با توجه به دامنه مقادیرشان به دو دسته ویژگی های گسسته[8] و ویژگی های پیوسته[9] قابل تفکیک هستند. در حالت کلی، یک کلاسه بند[10]، توصیف مختصر و معنادار (مدل[11]) برای هر برچسب کلاس[12] در رابطه با ویژگی ها تولید می کند. سپس، مدل برای پیش بینی برچسب کلاس نمونه های ناشناخته[13] بکار می رود. کلاسه بندی همچنین بعنوان یادگیری با ناظر[14] نیز شناخته می شود که در آن هر نمونه آموزشی دارای برچسب کلاس است. در حالی که، یادگیری بدون ناظر[15] یا خوشه بندی[16] جستجو می کند و گروه های همگن از اشیا را بر اساس مقادیر ویژگی هایشان دسته بندی می کند؛ در واقع، نمونه ها دارای برچسب کلاس نیستند. کلاسه بندی در محدوده وسیعی از کاربردها از جمله آزمایشات علمی[17]، تشخیص دارو[18]، پیش بینی آب و هوا[19]، تایید اعتبار[20]، تقسیم بندی مشتری[21]، بازاریابی هدف[22] و تشخیص تقلب[23] بطور موفقیت آمیزی بکار می رود.
کلاسه بندی بر پایه الگوها[24]، یک متدلوژی جدید محسوب می شود. کشف الگوهایی که نشاندهنده تمایز بین کلاس های مختلف هستند، یکی از موضوعات مهم در داده کاوی محسوب می شود. در این تحقیق، ما کلاسه بندی را بر اساس الگوهایی به نام الگوهای نوظهور[25] (Emerging Patterns) که تمایز بین کلاس ها را بصورت بارزی نشان می دهند، از مجموعه داده ها[26] استخراج می کنیم و سپس، بر اساس آنها، کلاسه بندی را انجام می دهیم.
[1] Classification
[2] Data mining
[3] Machine learning
[4] Neural networks
[5] Pattern recognition
[6] Training instances
[7] Features
[8] Nominal
[9] Numerical
[10] Classifier
[11] Model
[12] Class label
[13] Unknown
[14] Supervised learning
[15] Unsupervised learning
[16] Clustering
[17] Scientific experiments
[18] Medical diagnosis
[19] Weather prediction
[20] Credit approval
[21] Customer segmentation
[22] Target marketing
[23] Fraud detection
[24] Patterns
[25] Emerging patterns
[26] Datasets